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ABSTRACT E

We prove existence of solutions to varicus boundary-value problems for

nonautonomous Hamiltonian systems with forcing terms:

-p(t) = Hi(t, x(t), p(t)) + £(t) ,

x(t) = H;(t, x(EY., plE) ) & gt} . i:

Among these problems is that of pexiodic solutions: x(t + T) = x(t), é¥
p(t + T) = p(t). A special study is made of the classical case in which

i
i
2 : e [
H(x,p) has the form V(x) + Ip[ /2, potential plus kinetic energy, where the !
f existence of an infinite family of free harmonics is proven. The approach jq

throughout is via a variational principle involving a new, dual action

integral.
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SIGNIFICANCE AND EXPLANATION

Hamilton's differential equations are basic in the study of theoretical
mechanics. A particular class of motions of interest for such systems of
equations are the periodic ones, which correspond to oscillations (vibrations)

of the underlying physical system; the absence of such motions is usually

associated with resonance phenomena. In this paper we give conditions on the

Hamiltonian function H which guarantee the existence of periodic orbits, as

well as other more general types of motions. One distinction with previous

work on the subject is that we consider forced vibrations arising from external
driving forces; another is that the solutions in question are characterized
directly as the solutions of a specific minimization problem (i.e., we obtain

a 3;ariational principlérs, a feature which could prove useful for computational

purposes.

X

Accersion For

| NTIS GIARI
; DDC TAB {i)

Unaoinounced
Justification_

T e L e e e s

P T
_Aycilability Codes

Liailavd/or
Dist special

per -8 -
30 1 15 095

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.

MhlBace o,




!
NONLINEAR OSCILLATIONS AND BOUNDARY-VALUE PROELEMS ﬂ
FOR HAMILTONIAN SYSTEMS !

Frank l. Clarke* ané I. Ekelani**

§l. Iatroduction: a dual action principle.

This article is devoted to the study of certain boundary-value problems for

Hamiltonlan systems of the form

i

},'-bm H!(E, x(t), p(6)) + £(t)
{E. 1)
K(E) = H! (£, x(8), pt) + a(t)

Here, we interpret f and g as exterior forcing terms, while the (relatively weak)
dependence of H on t can be viewed as due to the presence of time-~varying para-

meters in the system itself. Of particular interest among the boundary-value

problems associated with (1.1) is the question of T-periodic solutions: x(t + T) =

x(t), p(t + T) = p(t). Our results, which are of a more general nature, prove the

existence on certain intervals [0,T] of solutions (x,p) to (1.1) satisfying various
boundary conditions.

The Hamiltonians H(t,x,p) that we consider are convex in (x,p) for each ¢,
and in these same variables exhibit growth that is superlinear but no more than
quadratic (of course, we are stating assumptions and facts loosely at this point).

The superquadratic case, which can be treated by modifying our approach somewhat

}& along the lines of (7], will appear elsewhere. oOur approach is a refinement of the
one employed in [4] and later in [6], and involves a new "dual action principle." To
describe this principle, let us recall the conjugate convex function G correspondinc

to H:

n

(1.2) Glt,y,q) =sup {y * x+q* p- H(t,x,p) : (x,p) ¢ R xR}

*
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N

Consider now the following variational problem: to minimize

o
(1.3) [ {-p* x+G(t, -p - £, x - g)} dt

J

0
over functions (x,p) satisfying some given set of boundary conditions at 0 and T.
The dual action principle alluded to is the following: if (x,p) 1is an extremal for
the functional (1.2), then there exist translates (x,p) of (i,b) which satisfy the
Hamiltonian system (l1.1) (i.e. for certain constants 00, S the functions

X=X 00, P = L + 8 satisfy (1.1)). This is Lemma 2.1 in §2, where however the

0

change of variables
j=k-q , g=p+f

has been applied to the functional.

The function G defined by (1.2) may not be differentiable, and the reader may
wonder how to interpret "extremal" in the above. As we shall see, the approach used
here requires no differentiability; in fact, we actually consider a more general
"Hamiltonian inclusion" of which (1.1) is a special case (see 2.1). The main advantage
of the dual action principle in our present setting is that the functional (1.3) will
admit a minimum, in sharp contrast to the usual action integral

T

[ {-p - % + H(t,x,p)} at

0
which is bounded neither above nor below. In consequence, the trajectories of (1.1)
are not only known to exist, but are furthermore characterized as solutions to a
specific minimization problem, a fact that could prove useful for computation.

In 52 we prove the existence, for all T suitably bounded above, of solutions
(x,p) of (1.1) for which x(T) - x(0), p(T) - p(0) are arbitrarily prescribed. (Thus,

as a special case, we obtain periodicity). A further result yields existence of

solutions for which x(0) and x(T) assume arbitrarily prescribed values.
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In §3, we investigate the case when there is no forcing term on the right-hand
side (f = 0 = g), and the system has an equilibrium at the origin (H;(t,0,0) =0 =
Hé(t,o,o)). To make the results more readily available for use in the framework of
classical mechanics, we have set up this study in the so-called classical case, where
the Hamiltonian H(t,x,p) is p2/2 + V(t,x), kinetic energy + potential.

We investigate the existence of periodic solutions other than the trivial one
(rest at equilibrium). When V really depends on time, and is T-periodic in t, this
is the study of so-called (nonlinear) parametric oscillations, with period an integer
multiple of T. When V does not depend on time, this is the study of (anharmonic)
free oscillations. The results are best illustrated by example (3.34), which is a kind
of nonlinear n-dimensional Duffing's equation, with a time-varying parameter.

Previous results obtained through methods bearing some relation to the present one
are described in [4] (6] (7] (8], and other techniques are applied, in the periodic
case, by Rabinowitz [10] [11), Weinstein [13], Amann and Zehnder [l1], among others

. (we refer to [11) for more detailed references). (For the most part, these deal with

free (unforced) oscillations).

.
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52. Ham.ltonian boundary-value problems.

We deal in this section with the following Hamiltonian system with forcing terme:
(2.1) (=p(t), X(t)) € BH(t, x(t), p(t)) + (£(t), g(t)) a.e. ,

where H: [0,®) x R xR+ R is a given Hamiltonian and £, g: [0,=) - R" are given
functions. We shall suppose that f and g belong to LZ(O,a) for every finit
positive a, and concerning the Hamiltonian H(t,x,p) we make the following
assumptions: H(e,x,p) is measurable for each (x,p), H(t,+,*) 1is convex for each t,

and there exist positive constarts ¢, k, c¢', k', a such that H satisfies, for all

(t,x,p), the following:

k' 1+a

o | ep |

(2.2)

= cf s H{E,X,p) = % ](x,p)l2 + & .

The 3H in (2.1) refers of course to the subdifferential (12] of the convex
function (x,p) = H(t,x,p), and as pointed out in §1, if it is further supposed that
H 1is differentiable in (x,p) (which, however, we have no need to do), then (2.1)

reduces to the familiar system of equations

X Hé(t,x,p) + g(t)

=P

H;(t,x.p) + £ ()
We denote G(t,y,q) the conjugate of H(t,*,*):

(2.3) G(t,y,q) = sup {y * x + q* p - H(t,x,p) : (x,p) ¢ R x ®"}
Our hypotheses imply that G is finite everywhere, measurable in t, and satisfies
the following growth conditions, which are elementary consequences of combining (2.2

and (2.3) (see [6, Lemma 1]):

(2.4) sty > [y, |2/ - c

1+8

fasn Naeal™ s

(2.5) G(t,y,q) < (k')

where B = 1l/a.
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Let F(t) = ! f(t)dr, and observe that F belonygs to L (0,a) for any finite
0
positive a. In the proofs of the theorems that follow, a certain functional I

2 - : :
| i B intervenes repeatedly; we now define that functional and prove a useful

-
existence theorem. Let ¥ and { be elements of Lo (0, DY ﬂn) for fixed T > 0O,
and define

T t
(2.6) Ilv.y) = ] {e(t) = F(t) - [e(t) + glt)] ° f Pp(r)dr + G(t, - w(t), ¢(t)):dt

0 0
Note that the integral is always well-defined, albeit perhaps as + =.
Theorem 2.1 If T < V2/k, then the functional I attains a minimum on any nonempty
weakly closed subset S of L2 x L2 upon which it is not identically + =.
Proof: (all norms are L2) By Holder's inequality we have

t

(2.7 W weoar < ol V2,

0

and if this is invoked along with (2.4) we deduce immediately
1,0 > -lel fEl + Dyl /3] ~ Thglliel /2 + diel? + el ?) /2 - c
: ; ! 2 2
Calling upon the inequality 2ab < a + b produces

13,4 > {1/x - T/V2) el + ||w||2)/2 - UIFlllell - Tlallliylt V2 - ¢

Since the coefficient of the quadratic term is positive, it follows that I 1is coercive;

i.e. that for some € > 0 and some constant ¢, I satisfies

2 =
(2.8) Te,9) > ediel? « ful?) - &
Now let (¢n.wn) be a minimizing sequence for I over S. Then by (2.8}, the
sequence is bounded in norm, so that we may select (without relabeling) a subscguence

converging weakly to a limit (¢O,wo) in S. We deduce from dominated convergence

t €
that I Lo converges uniformly to f QO' whence follows the fact that
0 0
5 I
{¢ ¢F=~1[v +g]- v_lat
0 n n e o
“5a

e — —
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converges to the corresponding expression for (;d,;”). The other component of I,
T

the ma; (;.v)"f G(t,-y,v)dt, defines a convex functional known to be weakly lower
8]

semicontinuous (see (9] for details), and so we gather the threads to obtain

I(;O,:C) < lim inf 1(¢n,kn) = lyf e
S
The preceding theorem is the key to the proofs of the existence theorems that
follow. The solutions (x,p) which are asserted to exist are furthermore characterized
as solutions to a specific minimization problem in the calculus of variations.
Theorem 2.2 Let T < v2/k, and let 31, 52 be any pair of points in R". Then there
exists on [0,T] a solution (x,p) of the system (2.1) satisfying

x(T) = x(0) + :.1 « P(T) = p(0) + &,

Remark. If it so happens that, uniformly in t,

5 :
(2.9) Hit,x,p) /[ (x,p)|" >+ 0 as |(x,p)]| » = ,

then the upper bound on H in (2.2) is satisfied (for appropriate c¢) by arbitrarily
small k, so that the conclusions of the theorem hold for all T.

When A has a certain specific value, our approach yields a slightly better

<

pper bound for T (of course, the symmetry between x and p vyields an analogous

result for Al):
Theorem 2.3 Let T < 2n/k, and let Al be any point in R'. Then there exists on
{0,T] a solution (x,p) of the system (2.1) satisfying

iy

(2.10) X(T) = x(0) +4, , p(M =p0) - [ f(r)ar
0

Remark. Of course, the greatest interest of theorems such as the above has traditionally
been 1in the study of periodic solutions. We obtain periodic solutions by postulating

further that f, g, and H(*,x,p) be T-periodic, and by taking A, = A_ = 0 in

T
Theorem 2.2, or by supposing additionally that f f(r)dt = 0 in Theorem 2.3.
&\
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The following result gives very precise conditions on x at the expense of saying
nothing about the boundary values of p; it subsumes an earlier result of
Aubin-Ekeland (2, Proposition 2].

o 5 3 . n
Theorem 2.4 Let T < v2/k, and let x., x be any pair of points in R . Then there

0 1

exists a solution (x,p) of system (2.1) satisfying

(2.11) x{@) iz - ; X(T) = x
(8] 1

Proof of Theorem 2.2

Consider the problem of minimizing the functional I given by (2.6) subject to
the conditions
i > i iy

g
(2.12) J ¢tmiar =4, - [ gmar , [ vmdr =4, + [ f(n)ar
0 % 0 s

Note that (2.12) defines a weakly closed subset S of L2 x L2, and that I 1is finite
somewhere on § (for example, for the constant functions that belong to §). Thus
by Theorem 2.1 the above minimization problem admits a solution (J,a). We now restate
this fact so as to make it clear that we are dealing with a variational problem; to
this end, define

t ©

vy = [ simar , o) = [ Vmar
0 0

and define the variational integrand L by:
L(t,y,q,%,4 = § * F - [y + glqg + G(t,-q,y)

Observe then that (;,a) is a solution to the problem of minimizing
T

213 [ nt,y.q.9.9at
0

: 5 2 A §
over the absolutely continuous arcs (y,g) having derivatives in L satisfying

T
(2.14) 7D = y0) =4, - [ gloyar , qO) =0 , q( =8, + [ far
0 0

-




Now if G were continuously differentiable (which is equivalent t«

convex), it would follow that (;,&) is an extremal for L, in the usual sense¢ tha
it would satisfy the Euler-Lagrange equation corresponding to L. 1In our present
setting, L 1is not differentiable (nor is it convex), however it is locally Lipschit

and the results of [3) are available. These state that (},a) is an extremal for

in an extended sense: “there exists an absolutely continuous function (r,s) such
that
(2.15) (t,5,r,s) € 3L(t,y,q,7,q) a.e.

where 3L refers to the generalized gradient (see [ 3]) of L (in all variables
jointly except t). (If L were Cl, then 3L would reduce to the usual gradient;
the reader is invited to show that in this case (2.15) is just the usual Euler-Lagrance

equation). In view of how L 1is defined, (2.15) is equivalent to

(2.16) E=0 , §=-y-g a.e.

(2.17) (-s, r = F + @) € 3G(t,-g,y) a.e.

It follows that for certain constants ro and co, we have

o o
(2.18) (v + [ g(t)dr + Gge G = # r,) € 3G(t,-q,¥) a.e.
0

By the inversion formula for conjugate subdifferentials, (2.18) is equivalent to

- t
(2.19) (-q,y) € 3H(t, y+ [ g+0.,q~F +r) a.e.
L 0 0

Let us set

N i
(2.20) x(t) = y(t) + [ g(r)dr + o

0

(2.21) p(t) = q(t) - F(t) + r

0
Then (2.19) is just the system (2.1):

(-p - £, X = g) € 3H(t,x,p) &.6.
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The fact that extremals of (2.13) are linked to (2.1) this way will be used repcatocl
(with various types of boundary conditions). We summarize the result as fcllows:
Lemma 2.1 If (;,i) is a solution to the problem of minimizing (2.13) subject t«
some sc¢t of boundary conditions on (;,5) at 0 and T, then there exist 7, @nd
such that the translates x and p of ; and i defined by (2.20) and (2.21)
satisfy (2.1).
Remark. A functional analytic proof of essentially this lemma, independent of the
results in (3], and based upon an argument in [5), 1is given in [6].

Returning now to the proof of Theorem 2.2, we note that our present boundary
conditions (2.14) imply

¥{TY = x(Q) = ;1 »  pT) - plD) = A

-

Proof of Theorem 2.3

Lemma 2.2 If T < 2n/k, then there exist positive constants il and cl such that,
2 T
for all ¢, ¢y in L , when f yilt)gr = O, we have
(8]

ﬂ
(2.22) Te,w) 2 e lel® + 1gl?) - ¢
4
Proof: When f Y(t)dt = 0, we have the estimate
(o}

t
N wenat < olivll/2m)
0
(This may be seen, for example, by comparing the Fourier expansion

t
of the T-periodic function q(t) = [ ¥(1)dT with that of & = .,

L

v 27ijt/T
I
=0 0

¥
upon noting that qo = 0). When this sharper estimate replaces (2.7), the same proof

that led to (2.8) yields (2.22).

-9~
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It then follows as before that the functional 1 admits a minimum over the class

T
defined by (2.12), with 52 = f f(7)dr. The proof from this point on is identical to
0

that of Theorem 2.2.
0.E.D.

Proof of Theorem 2.4

We consider the problem of minimizing the functional
T
(2.23) x 0 ] wmar + 1w,¥)
0

where I is given by (2.6) as before. Note that if G is defined by

(2.24) Glt,-¥,¢) = G(t,-b,p) + X, * ¥

then minimizing (2.23) is equivalent to minimizing the functional I defined exactly
as in (2.6), but with G replacing G. If we pick any k > k, then G will satisfy
a condition (2.4) for c¢ replaced by a larger ¢, since it differs from G by only
a linear term. Similarly, & will satisfy a condition of the form (2.5). Now we

may also pick k so that

T< V2/k ,
so that Theorem 2.1 will now apply to enable us to conclude that there is a solution

(¢,7) to the problem of minimizing (2.23) subject to the condition

s T
f ¢(t)dt = xl - xO - f g(1)dt. Equivalently, in a more classical formulation, the
(¢} 0

G [f: - I: i

minimizes

T

(2.5) x, ¢ at) + [ Lit,y.q,9,qad
0

subject to the boundary constraints
-10-
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T
(2.26) g0} = 0  w(T)y = w(0) = Xy = Xy = f g(r)dr
0

It follows precisely as in the proof of Theorem 2.2 that (;,a) is an extremal for L,

which implies (Lemma 2.1) that for certain constants CO' ro, the functions x and p
defined by (2.20) (2.21) satisfy (2.1). The fact that q(T) is unspecified and appears
as it does in the Bolza functional (2.25) leads as well to the conclusion that

s(T) = =-x where s 1is the "adjoint variable" that appeared in (2.15). (This is

ll

nothing more than the "transversality condition" of [3, Theorem 1]). We have already

seen in (2.16) (2.17) that

£ |
-s(t) = y(t) + [ glrlar + o, = x(t) , '
0

so that (in light of (2.26)) we deduce !

S
=P = 2, w0} =gE) - jo k(vdr = x . |4
Q.E.D. &
'

. <11
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§3. The classical case: free vibrations.

We now investigate the case when there is no forcing term on the right-hand

The Hamiltonian now is:

o
(3.1) BiY, %:p) = V(t,x) + = p
and Hamilton's equations are:
(3.2) ¥x®=p , p==3V(t,x) ,

“

which, in the particular case when V is differentiable (C”) and does not depend ot

time, boils down to the second-order system (Newton's equations):

(3.3) X = =V (x)

The existence results in the preceding sections certainly apply to this case.
However, a new problem arises in this context: non-triviality. If x_ ¢ R is an
equilibrium, i.e. if 3x V(t,xo) 3 0 for all t (since V(t,*) is convex, x the

is a global minimum) then the constant solution x(t) = x p(t) = 0 is T-periodi

0’

for all T > 0. This we call a trivial solution: the system rests at x.. The

¢

following theorem asserts the existence of non-trivial solutions, i.e. free vibrations
of the system.

Theorem 3.1 Assume the potential V(t,x) is measurable with respect to t « [0,T],
strictly convex with respect to x ¢ Rn. Assume that the origin is an equilibrium:
(3.4) v(t,x) , V(t,x) > V(t,0 =0

and that the following estimates hold:

k' 1+ , kK .2
(3.5) v(t,x) - [ x] = 6" £ Vie,xt L X+ ¢
X
(3.6) vt |x| <n=>viex) >3 x

where k', a, ¢', k, ¢, n, K are strictly positive constants.

m
b5 R (%r}%?), then there is at least one non-trivial returning solution
(x(t), p(t)) of Hamilton's equations (3.2):

t3.7) (x(0), p(0)) = (x(T), p(T))

-12-




The proof, of course, will involve the dual action principle, which itself inwve

the Legendre transform U(t,*) of the convex function V(t,*) given by Fenchel

formula:

u(t,y) = sup {xy - V(t,x)!

(3.8) =

We claim that there exists some ¢ > 0 such that:
2 a2
(3.9) ve, |yl cemuvey 2y

To prove this, we simply write that for all t:

e d B
(3.10) sup {xy - V(t,x)| |x| < n} < sup {xy - N [ x| < n}
because of relation (3.6), so that:
(3.1%) sup {xy - v(t,x)| [x] <n} < 2y2/K .

The function x & xy - V(t,x) attains its (unconstrained) maximum for
% € ;y U(t,y), and its value then is U(t,y). In other words, the left-hand side of
inequality (3.11) coincides with U(t,y), as long as ay U(t,y) intersects the bkall
of radius 1 around the origin.

But 3U(t,0) is known to be (0}, because it is just the set of points where
V(t,*) attains its minimum, which is {0} because of inequality (2.6). This same
estimate enables us to state that:

(3.12) v(t,x) > kn |x|/2 for x| > n
and hence:

(3.13) vit,x) > ¢(ix]) all (t,x)

with ¢(t) = kt2/2 for |t <n/2 and ¢(t) = Kn(t - n/2)/2 for [t| > n/2. 1t
follows that:

(3.14) ult,x) < e*([x]) all (t,x ,

where ¢* is the Legendre transform of ¢. It is finite for [t| < Kn/2, so that,

for a11 t, the function U 1is continuous on the ball of radius Kn/2 around the

origin., It follows that, on this ball, the multi-valued mapping vy * 3y u(t,y) is

=]3=

-




i W wn=empty, convex, compact values, and is upper semi-continuous.
< ¢ (t,0) + this means that there is some € < Kn/2 such that,
({3.15) “ AN 4 _‘.\. Ut v) 1 lxl < 7
¥ For Y| < £, the left-hand side of (3.11) is just U(t,y); hence formula (3.9).
: We now prove the theorem
i Prcof: Consider, as in $2, the path (y(t), g(t)) which minimizes the dual action
:
integral
bi 1 5
: (3.16) J(y,q) = ‘,' {~¥ (BYg(t) + = ¥(t)" + U(x, -4(t)))dt
4 under the constraints:
3
% T
(3.17) J] ¥yat =0 , [ 4qit)at =0 i
3 18] Q (
From Theorem 2.1 (modified by lemma 2.2), with f = 0 = g, there is a minimizing ?i
e g oy t
{(y,q) 1in L x L°, which corresponds to a solution (x,p) of Hamilton's equations: £
¥ S . |
‘ (3.18) x(€) = Ul(E, -q(t)) = y(t) + y }
b | &
£ :
(3.19) plt) = y(t) = q(t) + q, ("
| S
! Clearly, x(T) = x(0) and p(T) = p(0). We now show non-triviality. If
; (x(t), p(t)) were identically (0,0) then so would (=-g(t), y(t)) because of (3.18)
¢ and (3.12) (relation (3.6) implies that 0 is the only critical point of U(t,*)).
This in turn would imply that J(y,q), the minimum value of J, is zero.
% We will now find a feasible path (yo,q)) such that J(yo,qo) < 0. Start off by |
- (
iting J slightly differently:
{7 TR - 2 ¢ ‘
Jly.q) = f {Z (y(t) = q(t))” = = q(t)” + U(t, -g(t))}at ,
Q 7 e
k: Using estimate (3.9)
T T ;
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Jiv,@ £ 5[ g - qt)}ae + 3 [ {5 4 - q(e)%)ae :
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]l
.
‘ 1
®
> »
3 g
5
:




T

AT

Taking qO(t) = a cos (i} t) and yo(t) = %% sin (%} €). with 0 < |a| € we
get:

2 2
iid a
=— - 1) =
T2 2

bl L

1
Jlgedy) £ 5

which is strictly negative if T < 2n1/K. Hence the result.

If V(*,x) is T-periodic for each fixed x in R’, then the relations (3.7)
obviously imply the existence of a T-periodic solution (x(t), p(t)). Such a solution
obviously is kT-periodic for all k € N. It also could be k-lT-periodic for some
k € N, except if T 1is the minimal period. Interesting questions arise in that
connection: how many T-periodic solutions are there? 1Is there a way of finding one
with minimal period T?

The following results provide partial answers to these questions. From now on,
we identify T-periodic functions defined on R with their restrictions on [0,T].
Theorem 3.2 Let V(t,x) be T-periodic in t for all x € Rn, ar.x satisfy all the
assumptions of theorem 3.1. Let (x(t), p(t)) be some T-periodic solution found by
minimizing the dual action integral on [0,T], and (y(t), q(t)) the corresponding

minimizer. Set:
(3.20) vy e R, Aly) = Sup {{uts,y) - uts*', )| |(s,s" ¢ Rz}

3 T
(3.21) A=1+ () Agenan ([ ymamwan ™t
0 0

(We show below that the cuantity whose reciprocal is taken is strictly positive.)

Then, for no integer k > A can the solution (x(t), p(t)) be k-lT-periodic.
Proof: Assume (x(t), p(t)) is k-lT-periodic. Then so is the function (y(t), g(t))
because of relations (3.18) and (3.19). We define a new, T-periodic, function
(v, (8), g, (£)) by:

(v, (t1, g (6) = (ky(ek D), katek™h)

15~




We now compute J(yk,qk) and get:

g -

T f
1 2 :
= {9 -y ] - I &
3y, 0q,) IO (=9, (), (8) + 5§, (6)° + Ule, =& (©))}at 1

T o

=f {-kg:'(tk'l)q(tk'l) + % y(tk l)‘ + Ult, -g(tk 1},\ at «
0
™! 3 ;

= [ {-k¥(s)qg(s) + = ¥(s)° + U(ks, -G(s))}k ds
- 2

The integrand is k-lT-periodic, so that its integral over [0, k’lT} T ke
times its integral over [(0,T]. This yields:
T N K
Iy 09 = [ {~k¥(s)q(s) + = #(s)” + U(ks, -4(s))}ds
O -
T T
= J(y,q) - (k= 1) [ y(s)q(s)ds + [ {Ulks, -§(s)) ~ U(s, -&(s)) ds
0 0
T T
Jly,,q) < Jly,@ - (x - 1) [ $(s)gls)ds + [ A&(-G(s))ds
S > 5

But J(yk,qk) has to be greater or equal to J(y,q), since (y,g) is a minimiz
The result follows immediately.

In other words, formula (3.21) yields an a priori estimate for the minimal period
of the solution (x(t), p(t)) found in theorem 3.1. For this estimate to be meaning:

the right-hand side of (3.21) has to be finite: we shall see that this is the casec 2

general.
T
Notice first that the integral f yq dt is strictly positive. Indeed, we have,
0
by formula (3.16):
T T 1 =
-[ ¥gdt =MinJ - [ {39(0)° + UL, =q(t))}at
0 . R

The first term on the right-hand side is negative as seen in the proof of theorem 3.1,
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and the second is too, because of inequality (3.4):

U(t,y) = sup {xy - V(t,x)} > 0 « y - V(t,0) =0
X

We now show that, under slightly stronger assumptions then those of thecrerm 3.1,

the estimate A is finite. 1Indeed, inequalities (3.5) yield:

} 2 1 s T S
i e Ult,y) < 1+ 8k Iyl Boe
with B = 1/a. This gives us in turn:
. i - 1 2
Ay) < (b + o) + ket + 8k y|MP s 2ty

¥ -1 ., 148 =
[ a-a(e)at < (' +e)T + (k' + k') NG, + (207 gl
), g

Going back to formula (3.21), we see that a necessary condition for A to be

finite is that § ¢ L™ (0,7; R"), with B =a l. But § is defined by formula

(3.18); using the Legendre reciprocity formula:
qlt) € =3 V(t, x(t))

where x(t) is known to be continuous, and hence bounded. This will in general be
o + " . -
enough to ensure that g belongs to Ll B. For instance, if the potential V(t,x)

is continuous with respect to both variables, then the set:

U sx Y{t,x) over all (t,x) e [0,T] x B

s ® 148 A
is bounded whenever the set B c R is bounded, so that g ¢ L <c L . as desiread.

We state a few simple consequences:
Corollary 3.1 Assume the potential V(t,x) is continuous with respect to the

variables (t,x), strictly convex in X ¢ r" and T~periodic in t ¢ R. Assume that

the origin is an equilibrium:

(3.22) ¥(t,x) V(t,x) > v(0,0) =0
and that the following estimates hold:

k l+a 2=Y
(3.23) vie, ) o= %7 - et s viem < |37 4 e

st 1ol
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{3.24) ¥t, x| < n=vit,x) > = x {
hex n P . : " - -1 P
cr R°» a, ¢*, C, ¥y, ¢, n, K are strictly positive constants, with T > 2r K ", &
Then there is an infinite sequence ko B PR kn' . » » of integers, and for . |

each k a kXT-yvrxodx solution (x (t), ln(t)) of Hamilton's equations (2) such
n N n

that 9

(3.25) mED ™ (x (t), p(e)) #F (x (t), p_(t)) f

n n m m

|

Proof: Because of inequality (3.23), assumption (3.5) of theorem 3.1 is seen to hold {

!

for all k > 0 (by adjusting c¢ if necessary). It follows that the process of

minimizing the dual action integral can be applied to each of the periods kT, k € N,

| 4
starting with k = 1, which yields some T-periodic solution (xo(t), po(t)). By 3
theorem 3.2, there is some integer k1 such that the le—periodic solution (xl(t), L
} al(t\) obtained in this way is not T-periodic any more. '?
' Now start the process again with the new period T' = le, and pick an integer ké i:
and a solution (x:(t), y:(t)) which is kéT'-periodic but not T'-periodic. Set :ﬁ
kl = kikl' Start again with T" = kéT' = k2T. The solutions (xn(t), pn(t)) defined . E
’ by that process must have different (increasing) minimal periods. %a
! .
‘ ; Corollary 3.2 Assume the potential V(x) does not depend on time t, and is a strictly J
I convex function of x ¢ R'. Assume the origin is an equilibrium: j
(3.26) ¥x, V(x) > V(0) =0

and that the following estimates hold, with k < Kt

2 -
(3.27) ¥x, V(x) f_-):;—x +c t
: K 2
(3.28) ixl < n"Vix) > 3 X
Then, for any T ¢ (2nK-l, Zﬂk-l), there is a periodic solution of Hamilton's
$ juation:
4
i 3 s
s 1 (3.29) X=p , Ppeg= VX k
4 .
¢
b with minimal period T.
4
1 -18-
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Proof: If the potential V satisfies another estimate:

. "
K ;XA144 -t < VW

(3.30) ¥x,

for some strictly positive constants a, k', c¢', then all one has to do is to apply
theorems 3.1 and 3.2. The potential V is T-periodic in t for all T > 0, and
formula (3.20) defines &4(y) to be identically zero, so that A = 1. The result
follows.

If estimate (3.30) is not satisfied, one simply replaces V by another strictly
convex potential VR which does satisfy (3.30), in addition to (3.27), and wvhich
coincides with V on some large ball:

(3.31) Ex! £ N VR(x) = V(x)

Now find, by minimizing the dual action integral, some T-periodic solution of the

equations X = p, p € ~0 VR(x), for which the Hamiltonian is a first integral:
1 2
(3.32) Z p(t)” + VR(x(t)) = constant = h

This constant h can be estimated. We have, using (3.18), (3.19) and Legendre's

formula:

S

2 1 s 2 s
plE)}™ + 3 y(t)™ + VR(x(t)) + UR(-q(t)) =

= p(t)y(t) - x(£)d(t)

= p? - yOaw -y q

Integrating both sides and using (3.32):

T T 2 ¥
J nat+ [ {-yg+ 97 /2+uU (-)}at = [ p° at
0 0 " 0

T g
hT + J_(y,q) = [ p°dt
= 0

One then proceeds as in [6] to get the estimate:




(3.33) h <

which depends only on the constants in formula (3.27), and not on R.

The procedure is now obvious. Let T > 21rk“l be given. Formula (3.3
gives an upper bound for h. Choose R so large that V(x) < h implies x| < R.
Find (x(t), p(t)), a solution of Hamilton's equations for VR' with minimal period

!

By equation (3.32), x(t) 1lies entirely within the ball fxi < R, so that {x(t), p(t

solves Hamilton's equations for V.

We conclude this section by an example. The n-dimensional equation:

(3.34) X + (1 + a cos 2t)x + bx,

nes-1 o
x
"
o

has a non-trivial 27 -periodic solution provided
(3.35) orefal ST FSl e g @@ 4y ibig D
This follows from theorem 3.1, with the potential
n \8+1
2 2
(3.36) V(t,x) = (1 +acos 2t)x /2 +b| ) x| J2E +2)
i
1=1
(note that K can be taken larger than any given number, because of the second term,
and that k =1 + |a|)
If a=0, for any T < 2r, equation (3.34) has a solution with minimal
period T.

If b =0, equation (3.34) becomes linear, and does not have a 2r-periodic

solution any more, because one encounters parametric resonance.
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